Semi-classical limit in complex analysis

Chin-Yu Hsiao

Institute of Mathematics, Academia Sinica, Taiwan

Chin-Yu Hsiao Semi-classical limit in complex analysis

イロト イヨト イヨト イヨト

- Semi-classical limit is the process about taking the limit of large quantum (or large orbits, energies).
- "Semi-classical limit" plays an important role in modern mathematical research.

A (10) × (10)

- Part I: Asymptotic behavior of Gaussian integrals: The asymptotic behavior of Gaussian integrals best represents the spirit of "semi-classical limit".
- Part II: Semi-classical limit in geometry: Witten introduced semi-classical analytic proof of classical Morse inequalities at 1982. After Witten, "semi-classical limit" becomes a powerful tool in modern mathematical research.
- Part III: Semi-classical limit in complex analysis: We will introduce a "semi-classical limit" proof of Fefferman's famous theorem about boundary behavior of biholomorphic mappings.

A (1) > A (2) > A (2) >

- Consider the integral $\int_{\mathbb{R}} e^{-x^2 + ix^4} \chi(x) dx$, $\chi \in \mathcal{C}^{\infty}_{c}(D)$, $\chi \equiv 1$ near x = 0, D is a small open set of 0 in \mathbb{R} .
- The study of such kind of integrals is closely related to many important problems in modern mathematical research.
- It is very difficult to calculate such kind of integrals.

- Consider the integral $I_k := \int_{\mathbb{R}} e^{k(-x^2+ix^4)} \chi(x) dx$, $k \gg 1$.
- Can we understand large k-behavior of I_k ?

Semi-classical Gaussian integrals

•
$$I_k := \int_{\mathbb{R}} e^{k(-x^2+ix^4)} \chi(x) dx = \frac{1}{\sqrt{k}} \int_{\mathbb{R}} e^{-x^2+ik(\frac{x}{\sqrt{k}})^4} \chi(\frac{x}{\sqrt{k}}) dx.$$

•
$$\lim_{k\to+\infty} \sqrt{k} I_k = \int_{\mathbb{R}} e^{-x^2} dx = \sqrt{\pi}.$$

• Moreover, we can show that
$$I_k \sim k^{-\frac{1}{2}}\sqrt{\pi} + k^{-\frac{3}{2}}a_1 + k^{-\frac{5}{2}}a_2 + \cdots$$
, $a_j \in \mathbb{R}$.

(ロ) (回) (E) (E) (E) (E)

Stationary phase formula of Hörmander and Melin-Sjöstrand

- $D \Subset \mathbb{R}^n$: open set.
- $F \in \mathcal{C}^{\infty}(D)$, Im $F \geq 0$.
- Im F(0) = 0, F'(0) = 0, det $F''(0) \neq 0$.
- $F' \neq 0$ in $D \setminus \{0\}$.

(日本) (日本) (日本)

Stationary phase formula of Hörmander and Melin-Sjöstrand

• Let
$$u \in C_{c}^{\infty}(D)$$
.
•

$$\int_{\mathbb{R}^{n}} e^{ikF(x)}u(x)dx$$

$$= e^{ikF(0)}\det\left(\frac{kF''(0)}{2\pi i}\right)^{-\frac{1}{2}}\sum_{j
(1)$$

• L_j : Differential operator of order $\leq 2j$, $L_0 = I$.

크

Stationary phase formula of Hörmander and Melin-Sjöstrand

• Let
$$u \in C_{c}^{\infty}(D)$$
.
•

$$\int_{\mathbb{R}^{n}} e^{ikF(x)}u(x)dx$$

$$= e^{ikF(0)}\det\left(\frac{kF''(0)}{2\pi i}\right)^{-\frac{1}{2}}\sum_{j
(1)$$

- L_j : Differential operator of order $\leq 2j$, $L_0 = I$.
- The behavior of u at the critical point determines the integral $\int_{\mathbb{R}^n} e^{ikF(x)}u(x)dx$.

・ 回 ト ・ ヨ ト ・ ヨ ト

Let Γ(λ + 1) = ∫₀^{+∞} e^{-t}t^λdt: Gamma function.
Let t = λ(1 + s).

Example

•
$$\Gamma(\lambda+1) = \int_{-1}^{+\infty} e^{-\lambda(1+s)} \lambda^{\lambda+1} (1+s)^{\lambda} ds = e^{-\lambda} \lambda^{\lambda+1} \int_{-1}^{+\infty} e^{-\lambda(s-\log(1+s))} ds.$$

 $\bullet\,$ We now study the large $\lambda\text{-behavior}$ of

$$e^{\lambda}\lambda^{-\lambda-1}\Gamma(\lambda+1) = \int_{-1}^{+\infty} e^{-\lambda(s-\log(1+s))} ds$$

(semi-classical limit of Gamma function).

イロン イヨン イヨン イヨン

臣

• $\int_{-1}^{+\infty} e^{-\lambda(s - \log(1 + s))} ds$ $= \int_{-1}^{+\infty} e^{-\lambda(s - \log(1 + s))} u(s) ds + \int_{-1}^{+\infty} e^{-\lambda(s - \log(1 + s))} (1 - u(s)) ds.$

• $u \in \mathcal{C}^{\infty}_{c}(U)$, $u \equiv 1$ near 0, U is an open set of 0 in \mathbb{R} .

(日)

- Let $F(s) := s \log(1 + s)$.
- Since F'(s) ≠ 0 outside s = 0, we can integrate by parts in s and get

$$\int_{-1}^{+\infty} e^{-\lambda(s-\log(1+s))}(1-u(s))ds = O(\lambda^{-N}), \ \ \forall N \in \mathbb{N}.$$

・ロト ・回ト ・ヨト ・ヨト

臣

Example

• From (1), we deduce

$$\int_{-1}^{+\infty} e^{-\lambda(s-\log(1+s))} u(s) ds = \sqrt{2\pi} \lambda^{-\frac{1}{2}} + a_1 \lambda^{-\frac{3}{2}} + a_2 \lambda^{-\frac{5}{2}} + \cdots$$

• We get

$$\Gamma(\lambda+1) = (\frac{\lambda}{e})^{\lambda} \sqrt{2\pi\lambda} (1+b_1\lambda^{-1}+b_2\lambda^{-2}+\cdots).$$

- $\Gamma(n+1) = n!, n \in \mathbb{N}$.
- $\Gamma(n+1) = n! = (\frac{n}{e})^n \sqrt{2\pi n} (1 + O(n^{-1})).$
- We obtain Stirling's formula.

イロン イヨン イヨン イヨン

臣

- Witten used "semi-classical limit" to give a pure analytic proof of classical Morse inequalities.
- We will introduce briefly Witten's approach.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- *M*: compact smooth manifold of dimension *n*.
- Let $f \in \mathcal{C}^{\infty}(M)$.
- For $x_0 \in M$, we call x_0 a critical point (of f) if $(df)(x_0) = 0$.

イロト イヨト イヨト イヨト

臣

- For a critical point x_0 , we say x_0 is non-degenerate if $\det \left(\frac{\partial^2 f}{\partial x_j \partial x_\ell}(x_0)\right)_{j,\ell=1}^n \neq 0.$
- *f* is a Morse function if every critical point of *f* is non-degenerate.
- We can always find a Morse function $f \in C^{\infty}(M)$.

A (10) × (10)

- Fix a Morse function $f \in C^{\infty}(M)$.
- Crit (f) := {all critical points of f}.

・ロト ・回ト ・ヨト ・ヨト

臣

- Let $x_0 \in \operatorname{Crit}(f)$, assume that $\left(\frac{\partial^2 f}{\partial x_j \partial x_\ell}(x_0)\right)_{j,\ell=1}^n$ has n_- negative eigenvalues, n_+ positive eigenvalues, $n_- + n_+ = n$.
- We call n_{-} the index of x_{0} and denote $ind(x_{0}) = n_{-}$.
- For j = 0, 1, ..., n, let $\operatorname{Crit}(f, j) := \{x \in \operatorname{Crit}(f); \operatorname{ind}(x) = j\}$ and let $\#\operatorname{Crit}(f, j)$ denote the cardinal number of $\operatorname{Crit}(f, j)$.

・ 「「・・ ・ 」 ・ ・ ・ ・ ・

•
$$H^{r}(M) = \frac{\operatorname{Ker}\left(d:\mathcal{C}^{\infty}(M,\Lambda^{r}(T^{*}M)) \to \mathcal{C}^{\infty}(M,\Lambda^{r+1}(T^{*}M))\right)}{\operatorname{Im}\left(d:\mathcal{C}^{\infty}(M,\Lambda^{r-1}(T^{*}M)) \to \mathcal{C}^{\infty}(M,\Lambda^{r}(T^{*}M))\right)}$$
: *r*-th De Rham cohomology group.

• dim $H^{r}(M)$: r-th Betti number of M.

・ロン ・四 と ・ ヨ と ・ ヨ と

E

Theorem (Morse inequalities)

• dim $H^r(M) \leq \#$ Crit $(f, r), r = 0, 1, \ldots, n$.

•
$$\sum_{r=0}^{q} (-1)^{q-r} \dim H^r(M) \le \sum_{r=0}^{q} (-1)^{q-r} \sharp \operatorname{Crit}(f, r),$$

 $q = 0, 1, \dots, n.$

•
$$\sum_{r=0}^{n} (-1)^{n-r} \dim H^r(M) = \sum_{r=0}^{n} (-1)^{n-r} \sharp \operatorname{Crit}(f, r).$$

イロン スロン イヨン イヨン

臣

• $\sum_{r=0}^{n} (-1)^{r} \dim H^{r}(M) = \chi(M)$: Euler characteristic number of M.

(日) (四) (三) (三) (三) (三)

• For $k \in \mathbb{N}$, consider

• $e^{-\frac{t}{k} \bigtriangleup_k^{(r)}}(x, y) \in \mathcal{C}^{\infty}(M \times M, \Lambda^r(T^*M) \boxtimes (\Lambda^r(T^*M)^{-1})$: Heat kernel of $\bigtriangleup_k^{(r)}$.

・ 回 ト ・ ヨ ト ・ ヨ ト

臣

Theorem (Atiyah-Singer-Patodi-Witten)

- For every t > 0 and k > 0:
- dim $H^r(M) \leq \int_M \operatorname{Tr} e^{-\frac{t}{k} riangle_k^{(r)}}(x, x) dV_M(x), \ r = 0, 1, \dots, n$
- $\sum_{r=0}^{q} (-1)^{q-r} \dim H^{r}(M) \leq \sum_{r=0}^{q} (-1)^{q-r} \int_{M} \operatorname{Tr} e^{-\frac{t}{k} \Delta_{k}^{(r)}}(x, x) dV_{M}(x), \ q = 0, 1, \dots, n.$ • $\sum_{r=0}^{n} (-1)^{n-r} \dim H^{r}(M) = \sum_{r=0}^{n} (-1)^{n-r} \int_{M} \operatorname{Tr} e^{-\frac{t}{k} \Delta_{k}^{(r)}}(x, x) dV_{M}(x).$

• (1) • (

- In general, it is very difficult to calculate $\operatorname{Tr} e^{-\frac{t}{k} \Delta_k^{(r)}}(x, x)$.
- When k goes to infinity, $e^{-\frac{t}{k} \triangle_k^{(r)}}(x, y)$ converges to well-known heat kernel on \mathbb{R}^n (Heat kernel of Harmonic oscillator).

• We can calculate that

$$\lim_{t \to +\infty} \lim_{k \to +\infty} \int_{M} \operatorname{Tr} e^{-\frac{t}{k} \Delta_{k}^{(r)}}(x, x) dV_{M}(x) = \sharp \operatorname{Crit}(f, r), \quad (2)$$

$$r=0,1,\ldots,n.$$

• From Theorem I and (2), we get classical Morse inequalities.

(4回) (1日) (日)

- Riemann mapping theorem: If U is a non-empty simply connected open subset of C, U ≠ C, then there exists a biholomorphic mapping f from U onto the open unit disk D = {z ∈ Z; |z| < 1}.
- The Riemann mapping theorem for high dimensional domains is not true.

・ 同 ト ・ ヨ ト ・ ヨ ト

- If the boundary of U is smooth, then the Riemann mapping function can be extended smoothly to the boundary,
- On high dimensional case, it is important to know boundary regularities of a biholomorhic mapping.

- $M := \{z \in \mathbb{C}^n; \ \rho(z) < 0\}, \ \rho \in \mathcal{C}^{\infty}(\mathbb{C}^n, \mathbb{R}), \ d\rho \neq 0 \text{ on } \partial M.$
- *M* is called strongly pseudoconvex if $\left(\frac{\partial^2 \rho}{\partial z_i \partial \overline{z}_\ell}(z)\right)_{j,\ell=1}^n$ is positive definite at every point of $\partial M := \{z \in \mathbb{C}^n; \rho(z) = 0\}.$

- Open problem in several complex variables: Let M_1, M_2 be bounded strongly strongly pseudoconvex domains in \mathbb{C}^n and let $F: M_1 \to M_2$ be a biholormorphic map. If F can be extended smoothly up to the boundary of M_1 .
- Charles Fefferman solved this problem at 1974 (his Fields medal work).

A (1) > A (2) > A (2) >

- Fefferman used very difficult and complicated harmonic analysis to solve this problem.
- In the rest of this talk, I will give a "semi-classical limit" proof of Fefferman's theorem.

A (1) > A (2) > A (2) >

M := {z ∈ Cⁿ; ρ(z) < 0}: bounded strongly pseudoconvex domain.

•
$$H^0(M) := \{ u \in L^2(M); \overline{\partial} u = 0 \}.$$

- Let $\{f_1, f_2, \ldots\}$ be an orthonormal basis of $H^0(M)$.
- Bergman kernel $B(x, y) := \sum_{j=1}^{+\infty} f_j(x) \overline{f_j(y)}$.
- $B(x,y) \in \mathcal{C}^{\infty}(M \times M), \ B(x,y) \in \mathcal{C}^{\infty}(M \times \overline{M}).$

・ 同 ト ・ ヨ ト ・ ヨ ト

- The study of boundary behavior of B(x, y) is closely related to many important problems in complex analysis and complex geometry.
- It is very difficult to study boundary behavior of B(x, y).

- The study of boundary behavior of B(x, y) is closely related to many important problems in complex analysis and complex geometry.
- It is very difficult to study boundary behavior of B(x, y).
- Fefferman:

$$B(x,x) = rac{a(x)}{
ho(x)^{n+1}} + b(x)\log(-
ho(x)), \ \ a,b\in \mathcal{C}^\infty(\overline{M}).$$

- Question: Can we have semi-classical version of B(x, y)?
- Goal: Find some kernel A_k(x, y) such that A_k can produce many holomorphic functions as k → +∞ and A_k(x, y) is easier to calculate or use.

•
$$M = \mathbb{B}_n := \left\{ z \in \mathbb{C}^n; |z|^2 < 1 \right\}$$
: unit ball.
• $B_{\mathbb{B}_n}(z, w) = \frac{n!}{\pi^n} \frac{1}{(1-z\overline{w})^{n+1}}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• For
$$m \in \mathbb{N}$$
,
 $H^0_m(\mathbb{B}_n) = \operatorname{span} \{ z_1^{\alpha_1} \cdots z_n^{\alpha_n} |_{\mathbb{B}_n}; \alpha_1 + \cdots + \alpha_n = m \}.$

• $B_m = B_m(x, y) = \sum_{j=1}^{d_m} g_{j,m}(x) \overline{g_{j,m}(y)}, \{g_{1,m}, \dots, g_{d_m,m}\}:$ orthonormal basis of $H_m^0(\mathbb{B}_n)$.

•
$$B_m(x,y) \in \mathcal{C}^{\infty}(\overline{\mathbb{B}_n} \times \overline{\mathbb{B}_n}).$$

・ロト ・回ト ・ヨト ・ヨト

- Let $\chi \in \mathcal{C}^{\infty}_{c}(I, \mathbb{R}_{+})$, $\chi \equiv 1$ near I_{0} , $I_{0} \Subset I \Subset \mathbb{R}_{+}$ open intervals.
- For $k \in \mathbb{N}$, put $A_k(z, w) := \sum_{m \in \mathbb{N}} \chi(\frac{m}{k}) B_m(z, w) \in \mathcal{C}^{\infty}(\overline{\mathbb{B}_n} \times \overline{\mathbb{B}_n}).$

• $A_k(z,w) = \frac{1}{\pi^n} \int_0^{+\infty} e^{ikt\Psi_0(z,w)} k^{n+1} \chi(t) t^n dt.$

•
$$\Psi_0(z,w) = i(1-z\overline{w}).$$

• Question: How to define $A_k(z, w)$ on general strongly pseudoconvex domains?

(日)

- Let $R_0 = \sum_{j=1}^n (z_j \frac{\partial}{\partial z_j} \overline{z}_j \frac{\partial}{\partial \overline{z}_j}).$
- $T_{R_0} := B_{\mathbb{B}_n} \circ R_0 \circ B_{\mathbb{B}_n} : \text{Dom } T_{R_0} \subset L^2(\mathbb{B}_n) \to L^2(\mathbb{B}_n):$ Toeplitz operator on \mathbb{B}_n .
- $H^0_m(\mathbb{B}_n)$: eigenspace of T_{R_0} corresponding to the eigenvalue m.

臣

Weighted Bergman kernel on strongly pseudoconvex domains

M := {z ∈ Cⁿ; ρ(z) < 0}: bounded strongly pseudoconvex domain.

•
$$R := \sum_{j=1}^{n} \left(\frac{\partial \rho}{\partial \overline{z}_{j}} \frac{\partial}{\partial z_{j}} - \frac{\partial \rho}{\partial z_{j}} \frac{\partial}{\partial \overline{z}_{j}} \right).$$

• $T_{R} := \frac{1}{2} \left(B \circ (R + R^{*}) \circ B \right) : \text{Dom } T_{R} \subset L^{2}(M) \to L^{2}(M):$
Toeplitz operator.

・ 回 ト ・ ヨ ト ・ ヨ ト

臣

Weighted Bergman kernel on strongly pseudoconvex domains

- T_R: self-adjoint.
- The spectrum $\operatorname{Spec}(T_R) \subset \mathbb{R}$ of T_R consists only of isolated eigenvalues, is bounded from below and has only $+\infty$ as a point of accumulation.

A (1) > A (2) > A (2) >

Weighted Bergman kernel on strongly pseudoconvex domains

- Let {f₁, f₂,...} ⊂ C[∞](M) be an orthonormal basis of H⁰(M) so that T_Rf_j = λ_jf_j, j = 1, 2,
- $A_k(x,y) := \sum_{j=1}^{+\infty} \chi(\frac{\lambda_j}{k}) f_j(x) \overline{f_j(y)} \in \mathcal{C}^{\infty}(\overline{M}).$
- The key point: When k → +∞, A_k(x, y) converges to the unit ball case.

- 4 回 ト 4 ヨ ト - 4 ヨ ト - -

Main result (jointly with George Marinescu)

Theorem I

With the notations and assumptions above, as $k \to +\infty$, on $\overline{M} \times \overline{M}$,

$$A_{k}(x,y) = \int_{0}^{+\infty} e^{ikt\Psi(x,y)}b(x,y,t,k)dt + O(k^{-\infty}),$$

$$b(x,y,t,k) \sim \sum_{j=0}^{\infty} b_{j}(x,y,t)k^{n+1-j}, \quad b_{0}(x,y,t) \neq 0, \quad (3)$$

$$b_{j}(x,y,t), b(x,y,t,k) \in \mathcal{C}^{\infty}(\overline{M} \times \overline{M} \times I), \quad I \Subset \mathbb{R}_{+},$$

$$\Psi(z,w) \in \mathcal{C}^{\infty}(\overline{M} \times \overline{M}), \quad \operatorname{Im} \Psi \ge 0,$$

$$\Psi(z,z) = -i\rho(z). \quad (4)$$

・ 回 ト ・ ヨ ト ・ ヨ ト …

- $b_0(x,x,t) = \frac{1}{\pi^n} \det(\mathcal{L}_x)\chi(t)t^n \neq 0, x \in \partial M.$
- By using the asymptotic expansion of $A_k(x, y)$, we can produce many holomorphic functions on M.

Theorem

- Let M_j be a strongly pseudoconvex domain of \mathbb{C}^n , j = 1, 2.
- Let $F: M_1 \to M_2$ be a biholomorphic map.
- Then, F extends smoothly to the boundary of M_1 .

・ロト ・回ト ・ヨト ・ヨト

"Semi-classical limit" proof of Fefferman's theorem

$B_1(x,y) = B_2(F(x),F(y))\det F'(x)\overline{\det F'(y)}.$ (5)

• If det F'(x) is unbounded on M_1 .

۲

- $\exists \{x_s\}_{s=1}^{+\infty} \subset M_1$, $\lim_{s \to +\infty} x_s = p \in \partial M_1$, such that $\lim_{s \to +\infty} |\det F'(x_s)| = +\infty$.
- Assume $\lim_{s\to+\infty} F(x_s) = q \in \partial M_2$.

伺き イヨト イヨト

"Semi-classical limit" proof of Fefferman's theorem

• From (3), we can find $a_0, a_1, \ldots, a_n \in M_2$ so that for every $k \gg 1$,

$$A_{k,2}(q,a_0) \neq 0,$$
 (6)

イロト イヨト イヨト イヨト

$$\det\left(\frac{\partial}{\partial z_j}\left(\frac{A_{k,2}(x,a_\ell)}{A_{k,2}(x,a_0)}\right)\right)_{j,\ell=1}^n|_{x=q}\neq 0.$$
 (7)

From (6), (7) and some straightforward calculation, we can find a₀, a₁,..., a_n ∈ M₂ so that for every k ≫ 1,

$$B_2(q,a_0) \neq 0, \tag{8}$$

A (10) × (10)

$$\det\left(\frac{\partial}{\partial z_j} \left(\frac{B_2(x, a_\ell)}{B_2(x, a_0)}\right)\right)_{j,\ell=1}^n |_{x=q} \neq 0.$$
(9)

"Semi-classical limit" proof of Fefferman's theorem

٩

$$B_1(x_s, F^{-1}(a_0)) = B_2(F(x_s), a_0) \det F'(x_s) \overline{\det F'(F^{-1}(a_0))}.$$
 (10)

• From (8) and (10), we get a contradiction.

イロト イヨト イヨト イヨト

- Similarly, det $(F^{-1})'(x)$ is bounded and hence det $F'|_{\partial M_1} \neq 0$.
- Define $u_j(z) := \frac{B_1(z,F^{-1}(a_j))}{B_1(z,F^{-1}(a_0))}, v_j(z) := \frac{B_2(z,a_j)}{B_2(z,a_0)}, j = 1, \dots, n.$
- From (9), {*v*₁,..., *v_n*} is a system of local holomorphic coordinates defined near *q*.

"Semi-classical limit" proof of Fefferman's theorem

• From (5), we have

$$\left(\frac{\partial}{\partial z_j} \left(\frac{B_1(x, F^{-1}(a_\ell))}{B_1(x, F^{-1}(a_0))} \right) \right)_{j,\ell=1}^n \\ = \left(\frac{\partial F_\ell}{\partial z_j}(x) \right)_{j,\ell=1}^n \circ \left(\frac{\partial}{\partial z_j} \left(\frac{B_2(F(x), a_\ell)}{B_2(F(x), a_0)} \frac{\det F'(a_\ell)}{\det F'(a_0)} \right) \right)_{j,\ell=1}^n.$$
(11)

From (11), {u₁,..., u_n} is a system of local holomorphic coordinates defined near p = F⁻¹(q).

・ 回 ト ・ ヨ ト ・ ヨ ト …

"Semi-classical limit" proof of Fefferman's theorem

•
$$v_j(F(z)) = \left(\frac{\det F'(F^{-1}(a_0))}{\det F'(F^{-1}(a_j))}\right) u_j(z), \ j = 1, \dots, n.$$

• In terms of local coordinates $\{u_1, \ldots, u_n\}$, $\{v_1, \ldots, v_n\}$,

$$F(u_1,\ldots,u_n) = \operatorname{diag}\Big(\overline{\left(\frac{\det F'(F^{-1}(a_0))}{\det F'(F^{-1}(a_1))}\right)},\ldots,\overline{\left(\frac{\det F'(F^{-1}(a_0))}{\det F'(F^{-1}(a_n))}\right)}\Big).$$

• F can be extended smooth to the boundary of M_1 .

- In a joint work with Marinescu, we establish a semi-classical Bergman asymptotic expansion on weakly pseudoconvex domains with ℝ-action.
- We establish Fefferman type regularity theorem about biholomoprphic mappings for weakly pseudoconvex domains with \mathbb{R} -action.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- In a joint work with Marinescu, we establish a semi-classical Bergman asymptotic expansion on weakly pseudoconvex domains with ℝ-action.
- We establish Fefferman type regularity theorem about biholomoprphic mappings for weakly pseudoconvex domains with \mathbb{R} -action.
- Find "semi-classical limit" in your study.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Thank you for your attention!

Chin-Yu Hsiao Semi-classical limit in complex analysis