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Semi-classical limit

Semi-classical limit is the process about taking the limit of
large quantum (or large orbits, energies).

”Semi-classical limit” plays an important role in modern
mathematical research.
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Plan of the talk

Part I: Asymptotic behavior of Gaussian integrals: The
asymptotic behavior of Gaussian integrals best represents the
spirit of ”semi-classical limit”.

Part II: Semi-classical limit in geometry: Witten introduced
semi-classical analytic proof of classical Morse inequalities at
1982. After Witten, ”semi-classical limit” becomes a powerful
tool in modern mathematical research.

Part III: Semi-classical limit in complex analysis: We will
introduce a ”semi-classical limit” proof of Fefferman’s famous
theorem about boundary behavior of biholomorphic mappings.
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Gaussian integrals

Consider the integral
∫
R e−x2+ix4χ(x)dx , χ ∈ C∞

c (D), χ ≡ 1
near x = 0, D is a small open set of 0 in R.
The study of such kind of integrals is closely related to many
important problems in modern mathematical research.

It is very difficult to calculate such kind of integrals.
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Semi-classical Gaussian integrals

Consider the integral Ik :=
∫
R ek(−x2+ix4)χ(x)dx , k ≫ 1.

Can we understand large k-behavior of Ik?
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Semi-classical Gaussian integrals

Ik :=
∫
R ek(−x2+ix4)χ(x)dx = 1√

k

∫
R e

−x2+ik( x√
k
)4
χ( x√

k
)dx .

limk→+∞
√
kIk =

∫
R e−x2dx =

√
π.

Moreover, we can show that
Ik ∼ k−

1
2
√
π + k−

3
2 a1 + k−

5
2 a2 + · · · , aj ∈ R.
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Stationary phase formula of Hörmander and
Melin-Sjöstrand

D ⋐ Rn: open set.

F ∈ C∞(D), ImF ≥ 0.

ImF (0) = 0, F ′(0) = 0, detF ′′(0) ̸= 0.

F ′ ̸= 0 in D \ {0}.
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Stationary phase formula of Hörmander and
Melin-Sjöstrand

Let u ∈ C∞
c (D).

∫
Rn

e ikF (x)u(x)dx

= e ikF (0)det
(kF ′′(0)

2πi

)− 1
2
∑
j<N

k−j(Lju)(0) + O(k−N).
(1)

Lj : Differential operator of order ≤ 2j , L0 = I .

The behavior of u at the critical point determines the integral∫
Rn e

ikF (x)u(x)dx .
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Let u ∈ C∞
c (D).

∫
Rn

e ikF (x)u(x)dx

= e ikF (0)det
(kF ′′(0)

2πi

)− 1
2
∑
j<N

k−j(Lju)(0) + O(k−N).
(1)

Lj : Differential operator of order ≤ 2j , L0 = I .

The behavior of u at the critical point determines the integral∫
Rn e

ikF (x)u(x)dx .

Chin-Yu Hsiao Semi-classical limit in complex analysis



Example

Let Γ(λ+ 1) =
∫ +∞
0 e−ttλdt: Gamma function.

Let t = λ(1 + s).
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Example

Γ(λ+ 1) =
∫ +∞
−1 e−λ(1+s)λλ+1(1 + s)λds =

e−λλλ+1
∫ +∞
−1 e−λ(s−log(1+s))ds.

We now study the large λ-behavior of

eλλ−λ−1Γ(λ+ 1) =

∫ +∞

−1
e−λ(s−log(1+s))ds

(semi-classical limit of Gamma function).
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Example

∫ +∞

−1
e−λ(s−log(1+s))ds

=

∫ +∞

−1
e−λ(s−log(1+s))u(s)ds +

∫ +∞

−1
e−λ(s−log(1+s))(1− u(s))ds.

u ∈ C∞
c (U), u ≡ 1 near 0, U is an open set of 0 in R.
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Example

Let F (s) := s − log(1 + s).

Since F ′(s) ̸= 0 outside s = 0, we can integrate by parts in s
and get∫ +∞

−1
e−λ(s−log(1+s))(1− u(s))ds = O(λ−N), ∀N ∈ N.
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Example

From (1), we deduce∫ +∞

−1
e−λ(s−log(1+s))u(s)ds =

√
2πλ− 1

2+a1λ
− 3

2+a2λ
− 5

2+· · · .

We get

Γ(λ+ 1) = (
λ

e
)λ
√
2πλ(1 + b1λ

−1 + b2λ
−2 + · · · ).
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Example

Γ(n + 1) = n!, n ∈ N.
Γ(n + 1) = n! = (ne )

n
√
2πn(1 + O(n−1)).

We obtain Stirling’s formula.
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Semi-classical limit in geometry

Witten used ”semi-classical limit” to give a pure analytic
proof of classical Morse inequalities.

We will introduce briefly Witten’s approach.
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Morse theory

M: compact smooth manifold of dimension n.

Let f ∈ C∞(M).

For x0 ∈ M, we call x0 a critical point (of f ) if (df )(x0) = 0.
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Morse theory

For a critical point x0, we say x0 is non-degenerate if

det
(

∂2f
∂xj∂xℓ

(x0)
)n

j ,ℓ=1
̸= 0.

f is a Morse function if every critical point of f is
non-degenerate.

We can always find a Morse function f ∈ C∞(M).
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Morse theory

Fix a Morse function f ∈ C∞(M).

Crit (f ) := {all critical points of f }.
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Morse theory

Let x0 ∈ Crit (f ), assume that
(

∂2f
∂xj∂xℓ

(x0)
)n

j ,ℓ=1
has n−

negative eigenvalues, n+ positive eigenvalues, n− + n+ = n.

We call n− the index of x0 and denote ind (x0) = n−.

For j = 0, 1, . . . , n, let
Crit (f , j) := {x ∈ Crit (f ); ind (x) = j} and let ♯Crit (f , j)
denote the cardinal number of Crit (f , j).
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Morse theory

H r (M) =
Ker

(
d :C∞(M,Λr (T∗M))→C∞(M,Λr+1(T∗M))

)
Im

(
d :C∞(M,Λr−1(T∗M))→C∞(M,Λr (T∗M))

) : r -th De

Rham cohomology group.

dimH r (M): r -th Betti number of M.
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Morse theory

Theorem (Morse inequalities)

dimH r (M) ≤ ♯Crit (f , r), r = 0, 1, . . . , n.∑q
r=0(−1)q−rdimH r (M) ≤

∑q
r=0(−1)q−r ♯Crit (f , r),

q = 0, 1, . . . , n.∑n
r=0(−1)n−rdimH r (M) =

∑n
r=0(−1)n−r ♯Crit (f , r).
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Morse theory

∑n
r=0(−1)rdimH r (M) = χ(M): Euler characteristic number

of M.
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Witten’s idea

For k ∈ N, consider

△(r)
k

:=
(
d∗ + k(df )∧,∗

)(
d + k(df )∧

)
+
(
d + k(df )∧

)(
d∗ + k(df )∧,∗

)
: C∞(M,Λr (T ∗M)) → C∞(M,Λr (T ∗M)).

e−
t
k
△(r)

k (x , y) ∈ C∞(M ×M,Λr (T ∗M)⊠ (Λr (T ∗M)−1): Heat

kernel of △(r)
k .
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Witten’s idea

Theorem (Atiyah-Singer-Patodi-Witten)

For every t > 0 and k > 0:

dimH r (M) ≤
∫
M Tr e−

t
k
△(r)

k (x , x)dVM(x), r = 0, 1, . . . , n∑q
r=0(−1)q−rdimH r (M) ≤∑q
r=0(−1)q−r

∫
M Tr e−

t
k
△(r)

k (x , x)dVM(x), q = 0, 1, . . . , n.∑n
r=0(−1)n−rdimH r (M) =∑n
r=0(−1)n−r

∫
M Tr e−

t
k
△(r)

k (x , x)dVM(x).
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Semi-classical limit in geometry

In general,it is very difficult to calculate Tr e−
t
k
△(r)

k (x , x).

When k goes to infinity, e−
t
k
△(r)

k (x , y) converges to
well-known heat kernel on Rn (Heat kernel of Harmonic
oscillator).
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Semi-classical limit in geometry

We can calculate that

lim
t→+∞

lim
k→+∞

∫
M
Tr e−

t
k
△(r)

k (x , x)dVM(x) = ♯Crit (f , r), (2)

r = 0, 1, . . . , n.

From Theorem I and (2), we get classical Morse inequalities.
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Semi-classical limit in complex analysis

Riemann mapping theorem: If U is a non-empty simply
connected open subset of C, U ̸= C, then there exists a
biholomorphic mapping f from U onto the open unit disk
D = {z ∈ Z; |z | < 1}.
The Riemann mapping theorem for high dimensional domains
is not true.
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Semi-classical limit in complex analysis

If the boundary of U is smooth, then the Riemann mapping
function can be extended smoothly to the boundary,

On high dimensional case, it is important to know boundary
regularities of a biholomorhic mapping.
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Semi-classical limit in complex analysis

M := {z ∈ Cn; ρ(z) < 0}, ρ ∈ C∞(Cn,R), dρ ̸= 0 on ∂M.

M is called strongly pseudoconvex if
(

∂2ρ
∂zj∂zℓ

(z)
)n

j ,ℓ=1
is

positive definite at every point of ∂M := {z ∈ Cn; ρ(z) = 0}.
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Semi-classical limit in complex analysis

Open problem in several complex variables: Let M1,M2 be
bounded strongly strongly pseudoconvex domains in Cn and
let F : M1 → M2 be a biholormorphic map. If F can be
extended smoothly up to the boundary of M1.

Charles Fefferman solved this problem at 1974 (his Fields
medal work).
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Semi-classical limit in complex analysis

Fefferman used very difficult and complicated harmonic
analysis to solve this problem.

In the rest of this talk, I will give a ”semi-classical limit” proof
of Fefferman’s theorem.
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Bergman kernels

M := {z ∈ Cn; ρ(z) < 0}: bounded strongly pseudoconvex
domain.

H0(M) :=
{
u ∈ L2(M); ∂u = 0

}
.
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Bergman kernels

Let {f1, f2, . . .} be an orthonormal basis of H0(M).

Bergman kernel B(x , y) :=
∑+∞

j=1 fj(x)fj(y).

B(x , y) ∈ C∞(M ×M), B(x , y) ∈ C∞(M ×M).
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Bergman kernels

The study of boundary behavior of B(x , y) is closely related
to many important problems in complex analysis and complex
geometry.

It is very difficult to study boundary behavior of B(x , y).

Fefferman:

B(x , x) =
a(x)

ρ(x)n+1
+ b(x) log(−ρ(x)), a, b ∈ C∞(M).
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Motivation

Question: Can we have semi-classical version of B(x , y)?

Goal: Find some kernel Ak(x , y) such that Ak can produce
many holomorphic functions as k → +∞ and Ak(x , y) is
easier to calculate or use.
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Example

M = Bn :=
{
z ∈ Cn; |z |2 < 1

}
: unit ball.

BBn(z ,w) = n!
πn

1
(1−zw)n+1 .
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Weighted Bergman kernel on Bn

For m ∈ N,
H0
m(Bn) = span {zα1

1 · · · zαn
n |Bn ; α1 + · · ·+ αn = m}.

Bm = Bm(x , y) =
∑dm

j=1 gj ,m(x)gj ,m(y), {g1,m, . . . , gdm,m}:
orthonormal basis of H0

m(Bn).

Bm(x , y) ∈ C∞(Bn × Bn).
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Weighted Bergman kernel on Bn

Let χ ∈ C∞
c (I ,R+), χ ≡ 1 near I0, I0 ⋐ I ⋐ R+ open

intervals.

For k ∈ N, put
Ak(z ,w) :=

∑
m∈N χ(mk )Bm(z ,w) ∈ C∞(Bn × Bn).
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Weighted Bergman kernel on Bn

Ak(z ,w) = 1
πn

∫ +∞
0 e iktΨ0(z,w)kn+1χ(t)tndt.

Ψ0(z ,w) = i(1− zw).

Question: How to define Ak(z ,w) on general strongly
pseudoconvex domains?
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Observation

Let R0 =
∑n

j=1(zj
∂
∂zj

− z j
∂
∂z j

).

TR0 := BBn ◦ R0 ◦ BBn : DomTR0 ⊂ L2(Bn) → L2(Bn):
Toeplitz operator on Bn.

H0
m(Bn): eigenspace of TR0 corresponding to the eigenvalue

m.
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Weighted Bergman kernel on strongly pseudoconvex
domains

M := {z ∈ Cn; ρ(z) < 0}: bounded strongly pseudoconvex
domain.

R :=
∑n

j=1(
∂ρ
∂z j

∂
∂zj

− ∂ρ
∂zj

∂
∂z j

).

TR := 1
2

(
B ◦ (R + R∗) ◦ B

)
: DomTR ⊂ L2(M) → L2(M):

Toeplitz operator.
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Weighted Bergman kernel on strongly pseudoconvex
domains

TR : self-adjoint.

The spectrum Spec (TR) ⊂ R of TR consists only of isolated
eigenvalues, is bounded from below and has only +∞ as a
point of accumulation.
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Weighted Bergman kernel on strongly pseudoconvex
domains

Let {f1, f2, . . .} ⊂ C∞(M) be an orthonormal basis of H0(M)
so that TR fj = λj fj , j = 1, 2, . . ..

Ak(x , y) :=
∑+∞

j=1 χ(
λj

k )fj(x)fj(y) ∈ C∞(M).

The key point: When k → +∞, Ak(x , y) converges to the
unit ball case.
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Main result (jointly with George Marinescu)

Theorem I

With the notations and assumptions above, as k → +∞, on
M ×M,

Ak(x , y) =

∫ +∞

0
e iktΨ(x ,y)b(x , y , t, k)dt + O(k−∞),

b(x , y , t, k) ∼
∞∑
j=0

bj(x , y , t)k
n+1−j , b0(x , y , t) ̸= 0,

bj(x , y , t), b(x , y , t, k) ∈ C∞(M ×M × I ), I ⋐ R+,

(3)

Ψ(z ,w) ∈ C∞(M ×M), ImΨ ≥ 0,

Ψ(z , z) = −iρ(z).
(4)
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Remark

b0(x , x , t) =
1
πn det(Lx)χ(t)t

n ̸≡ 0, x ∈ ∂M.

By using the asymptotic expansion of Ak(x , y), we can
produce many holomorphic functions on M.
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Fefferman’s theorem

Theorem

Let Mj be a strongly pseudoconvex domain of Cn, j = 1, 2.

Let F : M1 → M2 be a biholomorphic map.

Then, F extends smoothly to the boundary of M1.
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”Semi-classical limit” proof of Fefferman’s theorem

B1(x , y) = B2(F (x),F (y))detF
′(x)detF ′(y). (5)

If detF ′(x) is unbounded on M1.

∃ {xs}+∞
s=1 ⊂ M1, lims→+∞ xs = p ∈ ∂M1, such that

lims→+∞ |detF ′(xs)| = +∞.

Assume lims→+∞ F (xs) = q ∈ ∂M2.
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”Semi-classical limit” proof of Fefferman’s theorem

From (3), we can find a0, a1, . . . , an ∈ M2 so that for every
k ≫ 1,

Ak,2(q, a0) ̸= 0, (6)

det

(
∂

∂zj

(Ak,2(x , aℓ)

Ak,2(x , a0)

))n

j ,ℓ=1

|x=q ̸= 0. (7)
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”Semi-classical limit” proof of Fefferman’s theorem

From (6), (7) and some straightforward calculation, we can
find a0, a1, . . . , an ∈ M2 so that for every k ≫ 1,

B2(q, a0) ̸= 0, (8)

det

(
∂

∂zj

(B2(x , aℓ)

B2(x , a0)

))n

j ,ℓ=1

|x=q ̸= 0. (9)
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”Semi-classical limit” proof of Fefferman’s theorem

B1(xs ,F
−1(a0))

= B2(F (xs), a0)detF
′(xs)detF ′(F−1(a0)).

(10)

From (8) and (10), we get a contradiction.
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”Semi-classical limit” proof of Fefferman’s theorem

Similarly, det(F−1)′(x) is bounded and hence detF ′|∂M1 ̸= 0.

Define uj(z) :=
B1(z,F−1(aj ))
B1(z,F−1(a0))

, vj(z) :=
B2(z,aj )
B2(z,a0)

, j = 1, . . . , n.

From (9), {v1, . . . , vn} is a system of local holomorphic
coordinates defined near q.
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”Semi-classical limit” proof of Fefferman’s theorem

From (5), we have(
∂

∂zj

(B1(x ,F
−1(aℓ))

B1(x ,F−1(a0))

))n

j ,ℓ=1

=

(
∂Fℓ
∂zj

(x)

)n

j ,ℓ=1

◦
(

∂

∂zj

(B2(F (x), aℓ)

B2(F (x), a0)

detF ′(aℓ)

detF ′(a0)

))n

j ,ℓ=1

.

(11)

From (11), {u1, . . . , un} is a system of local holomorphic
coordinates defined near p = F−1(q).
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”Semi-classical limit” proof of Fefferman’s theorem

vj(F (z)) =
(detF ′(F−1(a0))
detF ′(F−1(aj ))

)
uj(z), j = 1, . . . , n.

In terms of local coordinates {u1, . . . , un}, {v1, . . . , vn},

F (u1, . . . , un)

= diag
((detF ′(F−1(a0))

detF ′(F−1(a1))

)
, . . . ,

(detF ′(F−1(a0))

detF ′(F−1(an))

))
.

F can be extended smooth to the boundary of M1.
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Remark

In a joint work with Marinescu, we establish a semi-classical
Bergman asymptotic expansion on weakly pseudoconvex
domains with R-action.
We establish Fefferman type regularity theorem about
biholomoprphic mappings for weakly pseudoconvex domains
with R-action.

Find ”semi-classical limit” in your study.
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Thank you for your attention!
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